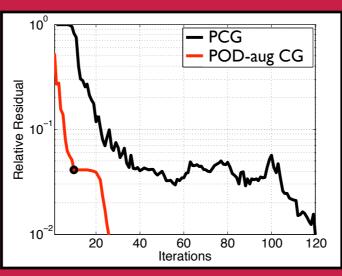
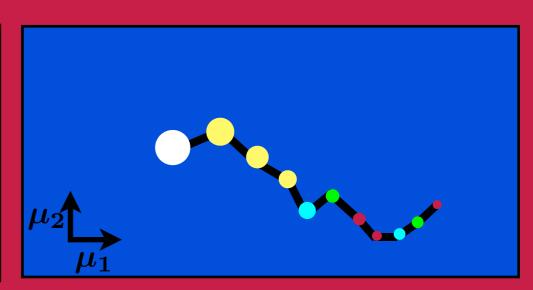


An adaptive POD-Krylov reduced-order modeling framework for repeated analyses problems







Kevin Carlberg and Charbel Farhat
Stanford University, USA
Department of Aeronautics & Astronautics

2009 Joint ASCE-ASME-SES Conference on Mechanics and Materials

Blacksburg, Virginia

June 27, 2009

Outline

- Real-time v. repeated analyses
 - Offline-online framework: ill-suited for repeated analyses
- Repeated analyses application: structural design optimization
- Novel adaptive POD-Krylov framework
 - POD-based iterative solver
 - Implementation
- Example: V-22 Osprey wing panel sensitivity analysis

Model reduction problem types

Real-time analysis

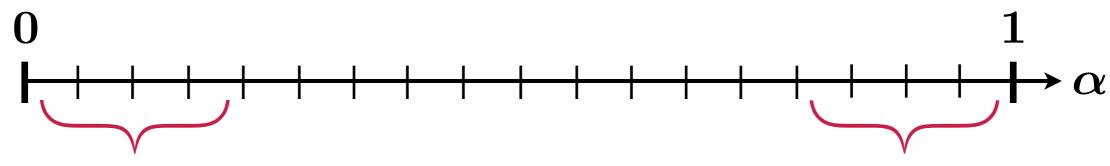
- "In-field" analysis
- Damage detection
- Model predictive control

Repeated analyses

- Design optimization
- Parameter space sampling
- Nonlinear analysis

Solution approach: competing objectives

minimize
$$\alpha \times \text{error} + (1 - \alpha) \times \text{cost}$$



Real-time analysis

minimize error

s.t. online cost $\leq \tau$

Repeated analyses

minimize total cost

s.t. error $\leq \epsilon$

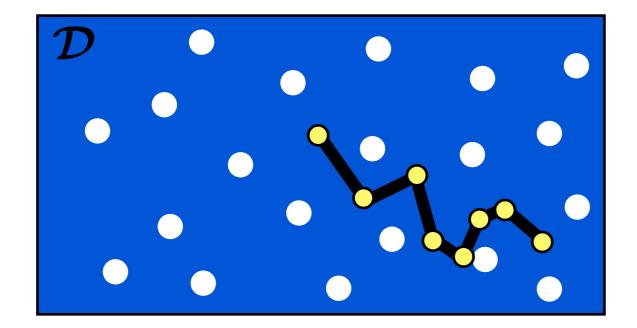
Offline-Online framework

Real-time analysis

Repeated analyses

- I) Offline
- Sample parameter space
- Build reduced basis
- 2) Online
- Analysis with reduced basis of fixed dimension

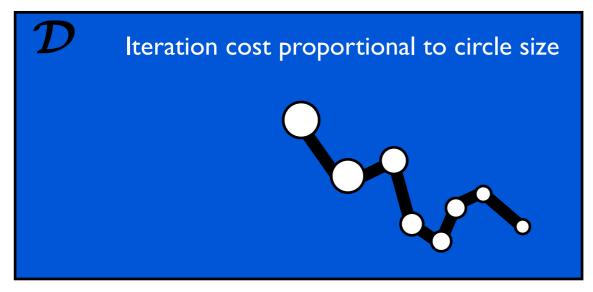
- cost okay
 - √ Very low online cost
- High offline X May preclude total cost savings
 - X May not meet accuracy requirements



- Parameter space \mathcal{D}
- Full-order model evaluation
- Reduced-order model evaluation
- Online trajectory
- Goal: total cost savings while satisfying accuracy requirements

Novel repeated analyses framework

- Guiding philosophy
 - I. Avoid extra computations
 - 2. Fully exploit data generated from previous analyses
 - 3. Use data to accelerate convergence of analyses to specified accuracy
- Procedure
 - 1. Execute only required analyses (no offline sampling)
 - 2. Build a POD basis on-the-fly
 - 3. Use the POD basis within a novel POD-based iterative method to accelerate new analyses



- Parameter space
- Accelerated analyses
- Trajectory

Application: structural optimization

• Structural optimization:

$$egin{aligned} & \min_{\mu \in \mathcal{D}} & J\left(u(\mu), \mu
ight) \ & ext{subject to} & l_i \leq c_i(u(\mu), \mu) \leq u_i, \quad i = 1, \dots, n_c \end{aligned}$$

- ullet State equations $K(\mu)u=f(\mu)$ enforce dependence $u(\mu)$
 - $lackbox{}{}^{lackbox{}}}}}}}}}}} Matrix K(\mu)$ stiffness matrix
 - u state vector
 - $f(\mu)$ load vector
- Must repeatedly solve state and sensitivity equations

Gradient-based structural optimization STANFORD

- \bullet At each optimization iteration k, solve
 - I) State equations $K(\mu^{(k)})u=f(\mu^{(k)})$
 - 2) Sensitivity equations
 - ightharpoonup Direct S.A. For $i=1,\ldots,n_{\mathrm{vars}}$

$$K(\mu^{(k)}) \frac{du}{d\mu_i} = \left. \frac{\partial f}{\partial \mu_i} \right|_{\mu^{(k)}} - \left. \frac{\partial K}{\partial \mu_i} \right|_{\mu^{(k)}} u$$

or

Adjoint S.A. For $i=1,\ldots,n_c+1$

$$K(\mu^{(k)})\psi_i = \left.rac{\partial \gamma_i}{\partial u}
ight|_{\mu^{(k)}}^T \quad \gamma_i = egin{cases} c_i, & i=1,\ldots,n_c \ J, & i=n_c+1 \end{cases}$$

Repeated analyses formulation

ullet For $k=1,\ldots,K$ and $i=1,\ldots,n_{ ext{RHS}}$, solve

$$K(\mu^{(k)})u_i = f_i(\mu^{(k)})$$

- $K(\mu^{(k)})$ large, sparse, symmetric positive definite (SPD)
- Iteratively solve by preconditioned conjugate gradient (PCG)
 - For $m=1,\ldots,M$ (until convergence)

$$egin{array}{ll} & \min_{x \in \mathcal{K}_m} & rac{1}{2} x^T K(\mu^{(k)}) x - x^T f_i(\mu^{(k)}) \end{array}$$

- ${}^{ullet}\mathcal{K}_m$ Krylov subspace of dimension m
- $ilde{v}$ Final solution $ilde{u}_i \in \mathcal{K}_M$ satisfies specified solver tolerance
- Approach: accelerate PCG convergence using ROM concepts

POD-Krylov ROM Approach

Solve
$$K(\mu^{(k)})u_i=f_i(\mu^{(k)})$$
 for $k=1,\ldots,K, i=1,\ldots,n_{ ext{RHS}}$

ullet Compute approximations $ilde{u}_i$ satisfying controlled tolerance ϵ_k

$$\frac{\|f_i(\mu^{(k)}) - K(\mu^{(k)})\tilde{u}_i\|_2}{\|f_i(\mu^{(k)}\|_2} < \epsilon_k$$

Approximations lie in the sum of two subspaces

$$\tilde{u}_i \in \mathcal{P} + \mathcal{K}_M$$

- $ightharpoonup \mathcal{P}$ proper orthogonal decomposition (POD) subspace
- "POD-Krylov reduced-order model"
- ullet Compute $ilde{u}_i$ very efficiently by a novel augmented conjugate gradient (CG) iterative method

Proper orthogonal decomposition

- Optimal representation of "snapshot" data
- Here, approximately minimize the projection error of the solution at a target configuration $\bar{\mu}$ near $\mu^{(k)}$
 - I. Snapshots $\{w_j\}_{j=1}^{n_w}$: components of solution $u(ar{\mu})$
 - Solutions from previous analyses
 - Sensitivity derivatives (Carlberg and Farhat, 2008)
 - 2. Weights $\{\gamma_j\}_{j=1}^{n_w}$: estimate the solution

$$u(ar{\mu}) pprox u_{ ext{est}} \left(ar{\mu}
ight) = \sum_{j=1}^{n_w} \gamma_j w_j$$

- Radial basis functions & Taylor expansion coefficients
- 3. POD norm: $\|x\|_{K(ar{\mu})} \equiv \sqrt{x^T K(ar{\mu}) x}$

POD bases and key properties

ullet Compute one POD basis for each RHS $i=1,\ldots,n_{
m RHS}$

$$\Phi_i(n) \equiv \left[\phi_1^i, \dots, \phi_n^i\right]$$

- Key properties
 - I. Optimal ordering
 - First n POD basis vectors span an optimal n -dimensional subspace
 - 2. $K(\bar{\mu})$ -orthonormality

$$\Phi_i(n)^T K(\bar{\mu}) \Phi_i(n) = I$$

 $ullet \Phi_i(n)^T K(\mu) \Phi_i(n) pprox I ext{ for } \mu ext{ near } ar{\mu}$

POD-augmented CG algorithm

- ullet Three stages to compute approximation $ilde{u}_i$ at $\mu^{(k)}$ near $ar{\mu}$
 - 1. Directly solve n_1 -dimensional reduced equations $(n_1 \text{ small})$

$$\Phi_i(n_1)^T K(\mu^{(k)}) \Phi_i(n_1) \hat{u} = \Phi_i(n_1)^T f_i(\mu^{(k)}),$$
 $\tilde{u}_{i,1} = \Phi(n_1) \hat{u}$

- Accurate (Property I) and low cost $(n_1 \text{ small})$
- **2.** Iteratively solve n_2 -dimensional reduced equations $(n_2\gg n_1)$

$$egin{align} \Phi_i(n_2)^T K(\mu^{(k)}) \Phi_i(n_2) \hat{u} &= \Phi_i(n_2)^T \left(f_i(\mu^{(k)}) - K(\mu^{(k)}) ilde{u}_{i,1}
ight), \ & ilde{u}_{i,2} = ilde{u}_{i,1} + \Phi_i(n_2) \hat{u} \end{aligned}$$

- Use augmented CG without forming reduced matrix
- More accurate (Property I) and low cost (Property 2)

POD-augmented CG algorithm

3. Iteratively solve full state equations to specified tolerance ϵ_k

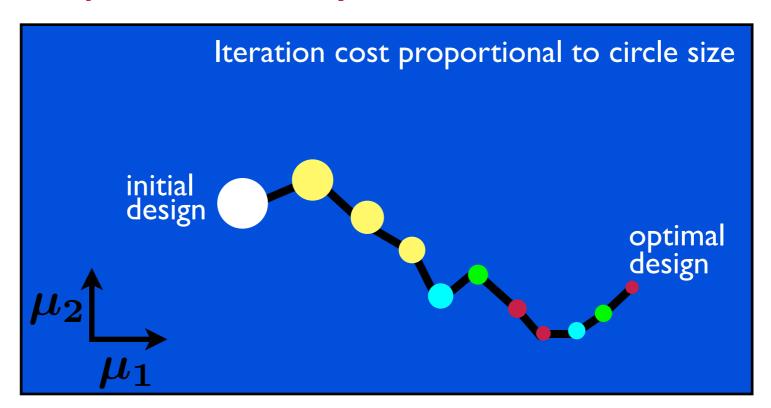
$$K(\mu^{(k)})\hat{u} = f_i(\mu^{(k)}) - K(\mu^{(k)})\tilde{u}_{i,2}$$

 $\tilde{u}_i = \tilde{u}_{i,2} + \hat{u}$

- ▶ Use augmented PCG (Farhat et al., 1994)
- Provides "adaptivity" to meet any specified tolerance
- Multiple-RHS (solving state equations + sensitivity analysis)
 - ullet Sequentially execute Stages I-3 for $i=1,\ldots,n_{
 m RHS}$
 - Stage I approximation space includes search directions from all previous RHS

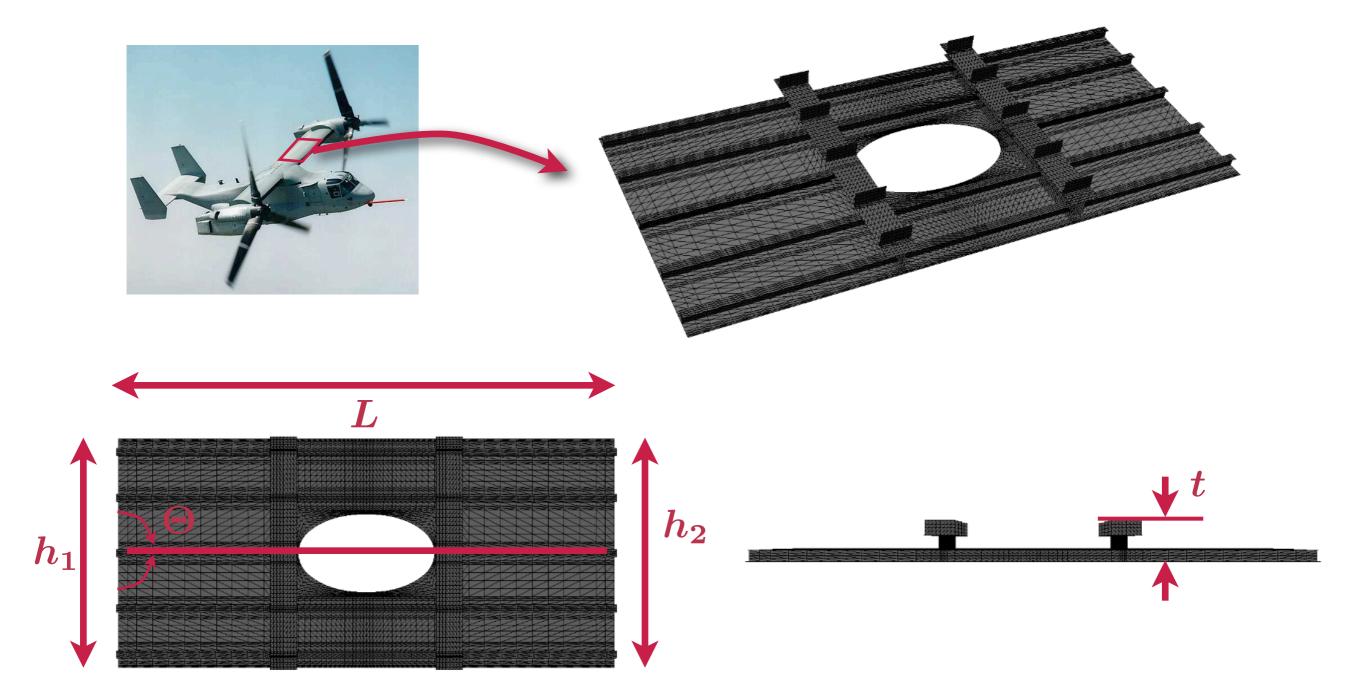
New framework in optimization

Use relevant previous analyses to accelerate current analysis



	Stage I basis	Stage 2 basis	Compute POD at end?
0			
0	$oldsymbol{W}$		
	$oldsymbol{W}$		
	$\Phi(n_1)$	$\Phi(n_2)$	
	$[W,\Phi(n_1)]$	$[W,\Phi(n_2)]$	

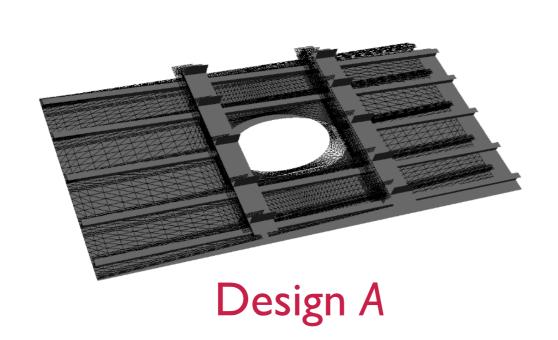
Example: V-22 Osprey wing panel

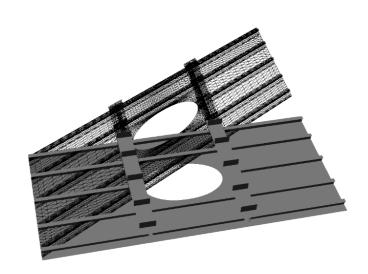


- Finite element model with 56,916 degrees of freedom
- 13 design variables (5 shape, 8 material)

Example: V-22 Osprey wing panel

- Problem Statement
 - Given: 10 previously-queried designs and 2 new designs





Design B

ullet Compute: approximations $ilde{u}_i, \ i=1,\ldots,n_{
m RHS}$ satisfying

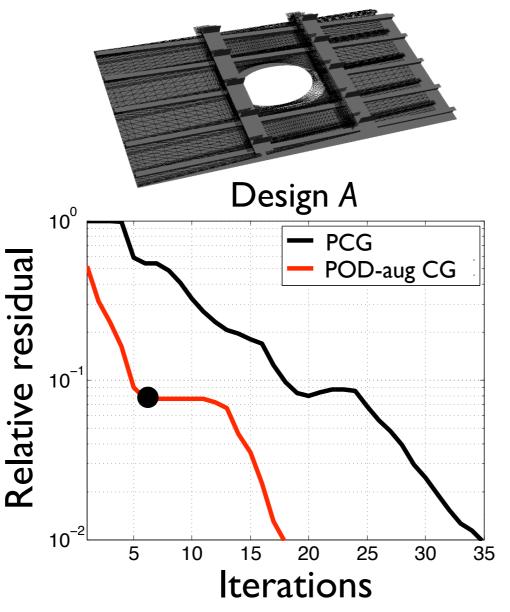
$$\frac{\|f_i(\mu) - K(\mu)\tilde{u}_i\|_2}{\|f_i(\mu)\|_2} < 10^{-2}$$

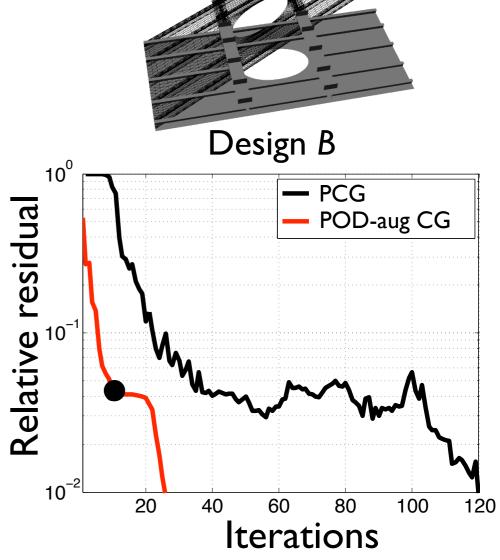
at the new designs

Results

Error convergence $n_{
m RHS}=1$

End of POD approximation





Simulation type	$n_{ m RHS}$	Speedup (flops), Design A	Speedup (flops), Design B
State equations	I	2.33	7.30
State equations + direct sensitivity	14	1.78	1.71

Conclusions

- A novel repeated analyses framework
 - Meets stated objectives:
 - ✓ Any accuracy requirement can be met
 - ✓ Guarantees cost savings
 - Efficiency due to choice of POD snapshots, weights, and norm
 - 1.7x to 7.3x speedup over existing iterative methods
- Future work
 - Fully implement for a repeated analyses problem
 - Combine with other augmented Krylov approaches (deflation)
 - Extend to systems with non-SPD matrices